

Edition 1.0 2020-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electronic components – Long-term storage of electronic semiconductor devices –

Part 7: Micro-electromechanical devices

Composants électroniques – Stockage de longue durée des dispositifs électroniques à semiconducteurs –

Partie 7: Dispositifs microélectromécaniques

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 31.020 ISBN 978-2-8322-9147-4

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

Г	JKEWU	KD	
IN	ITRODUCTION		
1	Scop	e	7
2	Norm	native references	7
3	Terms and definitions		
4	Storage considerations		9
	4.1	Overview of MEMS applications	
	4.2	Failure mechanisms	
	4.2.1		
	4.2.2	~	
	4.3	Materials management	
	4.4	Storage media	13
	4.5	Documentation/paper lot identifiers	14
	4.6	Inventory check	14
	4.7	Inventory dry packing refreshing	14
	4.8	Inventory re-assessment	
5	Base	line long-term storage requirements	14
	5.1	General	
	5.2	Moisture sensitivity designation	15
	5.3	Dry packing for storage	
	5.4	Non-moisture sensitive device storage	
	5.4.1		
	5.4.2	•	
	5.4.3	3	15
	5.5	Storage of MEMS devices before assembly – Wafer level and die level storage	15
	5.6	Storage of moisture sensitive finished devices	
	5.6.1	-	
	5.6.2		
	5.6.3		
	5.6.4	-	
	5.6.5	Labelling	16
	5.6.6	· ·	
	5.6.7	Storage environment	17
	5.6.8	Process (temperature) sensitivity designation	17
		informative) Packaged or finished device storage environment	
		tions	
Bi	bliograp	phy	19
Τź	able 1 –	Failure mechanisms in storage and stimuli to mitigate during storage	10
		Long-term environment – sustained condition requirements	
		Considerations for management, control and documentation during storage	
		Long-term storage environment – sustained condition considerations	
1 0	ADIC A. I	Long-torm storage environment — sustained condition considerations	0

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRONIC COMPONENTS – LONG-TERM STORAGE OF ELECTRONIC SEMICONDUCTOR DEVICES –

Part 7: Micro-electromechanical devices

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62435-7 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2664/FDIS	47/2669/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 62435 series, published under the general title *Electronic components – Long-term storage of electronic semiconductor devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

INTRODUCTION

This document applies to the long-term storage of electronic components.

This is a standard for long-term storage (LTS) of electronic devices drawing on the best long-term storage practices currently known. For the purposes of this document, LTS is defined as any device storage whose duration may be more than 12 months for product scheduled for long duration storage. While intended to address the storage of unpackaged semiconductors and packaged electronic devices, nothing in this document precludes the storage of other items under the storage levels defined herein.

Although it has always existed to some extent, obsolescence of electronic components and particularly of integrated circuits, has become increasingly intense over the last few years.

Indeed, with the existing technological boom, the commercial life of a component has become very short compared with the life of industrial equipment such as that encountered in the aeronautical field, the railway industry or the energy sector.

The many solutions enabling obsolescence to be resolved are now identified. However, selecting one of these solutions should be preceded by a case-by-case technical and economic feasibility study, depending on whether storage is envisaged for field service or production, for example:

- · remedial storage as soon as components are no longer marketed;
- preventive storage anticipating declaration of obsolescence.

Taking into account the expected life of some installations, sometimes covering several decades, the qualification times, and the unavailability costs, which can also be very high, the solution to be adopted to resolve obsolescence should often be rapidly implemented. This is why the solution retained in most cases consists in systematically storing components which are in the process of becoming obsolescent.

The technical risks of this solution are, a priori, fairly low. However, it requires perfect mastery of the implemented process and especially of the storage environment, although this mastery becomes critical when it comes to long-term storage.

All handling, protection, storage and test operations are recommended to be performed according to the state of the art.

The application of the approach proposed in this document in no way guarantees that the stored components are in perfect operating condition at the end of this storage. It only comprises a means of minimizing potential and probable degradation factors.

Some electronic device users have the need to store electronic devices for long periods of time. Lifetime buys are commonly made to support production runs of assemblies that well exceed the production timeframe of their individual parts. This puts the user in a situation requiring careful and adequate storage of such parts to maintain the as-received solderability and minimize any degradation effects to the part over time. Major degradation concerns are moisture, electrostatic fields, ultraviolet light, large variations in temperature, air-borne contaminants, and outgassing.

Warranties and sparing also present a challenge for the user or repair agency as some systems have been designated to be used for long periods of time, in some cases for up to 40 years or more. Some of the devices needed for repair of these systems will not be available from the original supplier for the lifetime of the system or the spare assembly may be built with the original production run but then require long-term storage This document was developed to provide a standard for storing electronic devices for long periods of time. For storage of devices that are moisture sensitive but that do not need to be stored for long periods of time, refer to IEC TR 62258-3.

Long-term storage assumes that the device is going to be placed in uninterrupted storage for a number of years. It is essential that it is useable after storage. Particular attention should be paid to storage media surrounding the devices together with the local environment.

These guidelines do not imply any warranty of product or guarantee of operation beyond the storage time given by the manufacturer.

The IEC 62435 series is intended to ensure that adequate reliability is achieved for devices in user applications after long-term storage. Users are encouraged to request data from suppliers to applicable specifications to demonstrate a successful storage life as requested by the user. These standards are not intended to address built-in failure mechanisms that would take place regardless of storage conditions.

These standards are intended to give practical guide to methods of long-duration storage of electronic components where this is intentional or planned storage of product for a number of years. Storage regimes for work-in-progress production are managed according to company internal process requirements and are not detailed in this series of standards.

The overall standard series is split into a number of parts. Parts 1 to 4 apply to any long-term storage and contain general requirements and guidance, whereas Parts 5 to 9 are specific to the type of product being stored. It is intended that the product specific part should be read alongside the general requirements of Part 1 to 4.

Electronic components requiring different storage conditions are covered separately starting with Part 5.

The structure of the IEC 62435 series as currently conceived is as follows:

Part 1 - General

Part 2 - Deterioration mechanisms

Part 3 - Data

Part 4 - Storage

Part 5 - Die and wafer devices

Part 6 - Packaged or finished devices

Part 7 - Micro-electromechanical devices - MEMS

Part 8 - Passive electronic devices

Part 9 - Special cases

ELECTRONIC COMPONENTS – LONG-TERM STORAGE OF ELECTRONIC SEMICONDUCTOR DEVICES –

Part 7: Micro-electromechanical devices

1 Scope

This part of IEC 62435 on long-term storage applies to micro-electromechanical devices (MEMS) in long-term storage that can be used as part of obsolescence mitigation strategy. Long-term storage refers to a duration that may be more than 12 months for products scheduled for storage. Philosophy, good working practice, and general means to facilitate the successful long-term storage of electronic components are also addressed.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60721-3-1, Classification of environmental conditions – Part 3-1: Classification of groups of environmental parameters and their severities – Storage

IEC 60749-20, Semiconductor devices – Mechanical and climatic test methods – Part 20: Resistance of plastic encapsulated SMDs to the combined effect of moisture and soldering heat

IEC 60749-20-1, Semiconductor devices – Mechanical and climatic test methods – Part 20-1: Handling, packing, labelling and shipping of surface-mount devices sensitive to the combined effect of moisture and soldering heat

IEC 62435-2, Electronic components – Long-term storage of electronic semiconductor devices – Part 2: Deterioration mechanisms

IEC 62435-3, Electronic components – Long-term storage of electronic semiconductor devices – Part 3: Data

IEC 62435-4, Electronic components – Long-term storage of electronic semiconductor devices – Part 4: Storage

IEC 62435-5, Electronic components – Long-term storage of electronic semiconductor devices – Part 5: Die and wafer devices